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1 Title of the Thesis and abstract 

1.1 Title of the thesis 

Design and Development of Support Vector Machines Using Piecewise Linear Approximation Based 

Optimization Techniques 

1.2 Abstract 

Machine learning has long championed the Support Vector Machine (SVM) for its classification 

prowess. Traditional research primarily focused on dual SVM optimization due to its compatibility with 

non-separable datasets via the kernel trick. However, the quadratic nature of dual optimization 

sometimes led to slower training speeds. This study explores an alternative perspective, emphasizing the 

primal SVM optimization problem. 

Instead of using the conventional approach, this research introduces a novel and fast technique that 

leverages the power of separable programming, termed the Piecewise Linear Approximation SVM 

(PLA-SVM). The crux of the method lies in transforming the inherently non-linear primal SVM problem 

into an approximating linear Programming (LP) problem through piecewise linear approximation using 

the lambda formulation of separable programming. Executing this transformational approach, the 

research harnesses the computational prowess of the GUROBI optimizer solver, unveiling a novel 

method for SVM optimization. 

The hard-margin PLA-SVM, designed for linearly separable datasets, was rigorously validated in the 

context of fault classification in a laboratory gas turbine engine. The study then introduced the soft-

margin PLA-SVM, which introduces regularization parameters 𝐶 and slack variables 𝜉′𝑠 for noisy or 

misclassified data. The proposed soft-margin PLA-SVM is validated on the IRIS flower dataset, PIMA 

Indian Diabetes dataset, Wisconsin Breast Cancer Original dataset, and Predictive Maintenance 

AI4I2020 dataset. 

In head-to-head comparisons with existing classifiers like SMO-based SVM, linear discriminant 

analysis, KNN (K-nearest neighbors), decision trees, ensemble boosted trees, tri-layered neural 

networks, and contemporary XGBoost, PLA-SVM consistently demonstrated significantly faster training 

speeds and minor improvements in accuracy, precision, F1 score, and AUC-ROC metrics. 

To showcase the strength of PLA-SVM, especially for large datasets, we performed practical 

experiments with around 30,266 observations from a machine learning tool – a DC motor kit for multi-

fault classification. Recognizing the limitations of primal SVMs in handling non-separable datasets, we 

strategically transformed the non-separable dataset obtained from the machine learning tool using 
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explicit kernel method. The results revealed that PLA-SVM exhibited superior training speed with a 

slight improvement in accuracy and other key performance metrics.  

In summary, this research introduces a paradigm shift in SVM optimization and demonstrates its 

exceptional effectiveness across various datasets and practical applications.  

2 A Brief description on the state of the art of the research topic 

Support Vector Machines (SVMs), introduced by Cortes and Vapnik [1], are renowned for their prowess 

in addressing regression and classification challenges. Initially, their success in linear applications was 

prominent, later extending to non-linear contexts through kernel tricks, impacting domains like document 

classification and drug design. Traditional SVM research predominantly focused on dual optimization due 

to the effectiveness of the kernel trick with non-separable datasets. While this approach granted SVMs 

significant power, the quadratic and non-linear nature of dual optimization occasionally led to prolonged 

training times [2]. 

Historically, SVM training concentrated on optimizing a concave function, particularly emphasizing dual 

optimization, which involved random initialization of LaGrange multipliers, introducing an element of 

unpredictability. Primal approaches, addressing the inherent linearity of SVMs in the input space, have 

garnered attention for their potential advantages. Noteworthy researchers, such as Suykens & Vandewalle, 

Fung & Mangasarian, Tayal et al., Keerthi et al., O. Chapelle, Zhizheng Li and Li, and Qing Wu and 

Wanqing Wang, explored various aspects of primal SVM optimization, showcasing its efficiency in both 

linear and non-linear dataset training [4-11]. 

In the broader SVM landscape, linear programming and piecewise linear approximation techniques have 

seen limited exploration. Recent methodologies, like those by Hadzic et al., Pedroso et al., Zhou et al., Xie 

et al., and Hess et al., introduced innovative approaches incorporating linear programming principles for 

SVM learning, offering promising prospects [12-16]. The evolution of SVMs has witnessed a shift towards 

primal optimization, marked by direct approaches to SVM optimization. 

Nataraj and Makwana presented a rapid strategy for QFT controller formulation, utilizing separable linear 

programming (PLA-LP method) [17-21]. Inspired by the non-linear nature of the primal SVM's objective 

function, we construct an SVM optimization problem employing separable programming, introducing the 

Piecewise Linear Approximation SVM (PLA-SVM). 

This transition sets the stage for our exploration of the Piecewise Linear Approximation SVM (PLA-

SVM), a novel approach that harnesses separable programming principles. The inherent linearity of the 

primal SVM's objective function inspires our endeavor to address the challenges posed by non-linear 
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datasets. In the context of this evolving landscape, our research aims to contribute to this paradigm shift, 

offering a fresh perspective that aligns with the current trajectory of SVM advancements. 

3 Definition of the problem 

The problem title is “Design and Development of Support Vector Machines using Piecewise Linear 

Approximation based Optimization Techniques.” 

Nonlinear programming (NLP) problems are crucial in engineering optimization. Piecewise linearization 

methods, gaining traction over decades, transform NLPs into linear programming (LP) or mixed-integer 

programming (MIP) models for approximate global optimal solutions. The simplex method, efficient for 

large-scale LP problems, is commonly used for solution procedures. 

Extending the simplex method to address general NLP problems involves converting non-separable 

objective functions and/or constraints into separable forms. A function is separable if it can be expressed 

as the sum of functions involving individual decision variables. Despite potential limitations, all 

encountered terms in our work can be addressed through appropriate substitutions. The separable linear 

programming formulation's primary advantage lies in the mathematical independence of nonlinearities. 

Each nonlinear function is replaced with a Piecewise Linear Approximation (PLA), constructed with 

special ordered set type 2 (SOS2) variables or λ variables, resulting in the λ-formulation. Global solutions 

can be derived using any efficient LP solver. 

Support Vector Machines (SVMs) excel in machine learning but face computational challenges, especially 

in their dual form, particularly with extensive datasets using the kernel trick. This directs our focus to the 

primal optimization problem of SVMs, which, while advantageous, is complex due to its intrinsic non-

linearity. This problem is approached by transposing the primal SVM challenge and ensuring 

computational efficiency: 

1. Transposing the Primal SVM Challenge: The primal SVM offers direct optimization advantages 

but presents a formidable non-linear challenge, especially with datasets beyond linear separability. 

2. Ensuring Computational Efficiency: Beyond addressing primal SVM's non-linearity, there is a need 

for a methodology that handles this non-linearity in a computationally expedient manner. 

The solution involves transforming the primal SVM's non-linear problem into an approximate linear 

programming framework, utilizing separable programming and piecewise linear approximations, 

particularly the lambda formulation. 

The successful execution yields two benefits: 

1. Streamlined SVM Optimization: By converting the primal SVM's inherent non-linearity into a 
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piecewise linear approximation, we streamline its optimization process, making it more 

manageable and solvable using existing linear programming tools. 

2. Enhanced Computational Efficiency: Pairing this transformed SVM problem with robust 

optimization platforms like the Gurobi optimizer promises significant gains in computational 

efficiency, notably evident through reduced training times and improved performance metrics. 

In essence, this research aims to enhance SVM optimization by addressing the challenges of the primal 

SVM. Through the PLA-SVM technique, we present an alternative to traditional SVM methods, with a 

focus on improving computational efficiency and classification effectiveness. 

4 Objective and Scope of work 

Objective:  

At the heart of SVM design lies the solution to a quadratic optimization problem. The primary objective 

of this research is to advance and refine SVM optimization techniques by integrating principles from linear 

programming. Specifically, we aim to introduce and validate the Piecewise Linear Approximation based 

Support Vector Machines (PLA-SVM) methodology, which harnesses the strengths of linear programming 

to offer an efficient and streamlined approach to SVM design and training. Our overarching goal is to 

significantly enhance the computational efficiency of SVMs while maintaining or even improving their 

robust classification capabilities. 

Scope of Work:  

The research focuses on developing a versatile framework for Piecewise Linear Approximation Support 

Vector Machines (PLA-SVM) applicable to diverse data conditions, spanning linearly separable to non-

separable datasets. It encompasses the creation of hard-margin and soft-margin PLA-SVM models to 

address varying degrees of data separability. 

In terms of computation, the research explores optimizations for computational efficiency. This involves 

transforming the SVM problem for compatibility with advanced linear programming techniques and 

integrating with state-of-the-art optimization solvers. 

Validation exercises with established datasets will demonstrate PLA-SVM effectiveness, comparing its 

performance to existing classifiers across various metrics for benchmarking. Practical implementation in 

real-world scenarios, like fault classification tasks, will assess scalability and performance on high-

dimensional datasets. 

The scope also includes investigating kernel methods to enhance PLA-SVM's applicability to non-

separable datasets, aiming for an optimal balance between computational speed and classification 
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accuracy. The overarching goal is to extend SVM utility to diverse practical applications, ensuring 

developed methods are robust, scalable, and efficient in real-world environments. 

5 Original contributions by the thesis 

● Novel SVM Formulation: Introducing Piecewise Linear Approximation Support Vector Machine 

(PLA-SVM), merging separable programming with SVMs to transform the primal problem into a 

piecewise linear framework. 

● Direct Primal Optimization Solution: This thesis pioneers a direct approach to the primal 

optimization challenge in SVM, highlighting its effectiveness compared to the traditional dual 

perspective. 

● Enhanced Computational Efficiency: PLA-SVM, utilizing the GUROBI optimizer solver, 

significantly improves training speed, crucial for real-time applications and large datasets. 

● Versatility Across Data Scenarios: Demonstrating PLA-SVM's adaptability in diverse scenarios, 

from fault identification in gas turbine engines to breast cancer predictions, validating its real-world 

utility. 

● Explicit Kernel Transformation: Overcoming primal SVM limitations with non-separable data 

through explicit kernel transformations, preserving core advantages with remarkable training 

speed. 

● Benchmarking Against Classifiers: A comprehensive study comparing PLA-SVM with popular 

classifiers consistently shows superior performance in speed, accuracy, precision, and various 

metrics. 

● Elimination of Initial Guess Dependency: PLA-SVM's distinctive feature is its independence from 

an initial guess solution, introducing a dynamic approach that adapts the initial search domain based 

on solver outcomes. 

In summary, these contributions not only introduce novel and efficient methods but also set the stage for 

future advancements in SVM methodologies across diverse fields. 

6 Methodology of Research, Results / Comparisons 

We propose a new approach to optimization of a primal SVM design.  The main idea is to represent the 

SVM optimization problem as an approximating LP model with separable piecewise linear objective and 

constraint functions. The SOS2 or lambda variables transform the nonlinear programming model into an 

approximating LP model, called as the PLA-LP model. 
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6.1  Methodology of Research 

 

6.1.1 Piecewise Linear Approximation using Separable Linear Programming  

The design approach posits that any non-linear function can be precisely approximated by a piecewise 

linear function [23]. Utilizing a piecewise linear approximation (PLA) transforms non-linear problems into 

linear ones, facilitating the use of simpler and more efficient linear programming techniques [24]. The 

PLA theory introduced in [25] focuses on transforming non-linear, non-convex optimization problems into 

approximating linear programming problems through separable programming. The non-linear function 

must be separable (i.e., a function of only one variable).  

An inequality-constrained problem is said to be separable if the objective functions and/or constraints 

can be separated in the variables 𝑥𝑖 as follows: 

𝑀𝑖𝑛 𝑓(𝑋) =  ∑ 𝑓𝑖(𝑥𝑖)
𝑛
𝑖=1 ,    𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠   (1) 

Subject to constraints, 

𝐶𝑗 :  ∑ ∑ 𝑔𝑗𝑖(𝑥𝑖) ≤  𝑏𝑗
𝑛
𝑖

𝑚
𝑗=1 , 𝑚 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠     (2) 

where  𝑏𝑗 is a constant and 𝑔𝑗𝑖(𝑥𝑖) is a 𝑗th constraint for the 𝑖th variable. 

 

A separable piecewise linear function is depicted in Figure 1, where 𝑃1, 𝑃2, … , 𝑃_𝑘 are the breakpoints 

— the places at which the function changes direction. A piecewise linear approximation (PLA) of the 

nonlinear function 𝑓(𝑥) in Figure 1 is denoted by 𝑓(𝑥)̃. Here, 𝑓(𝑥)̃ is defined over the closed intervals 

[𝑥𝑘, 𝑥𝑘+1], for 𝑘 =  1, … , 𝐾 –  1, where the coordinates (𝑥𝑘 , 𝑓(𝑥𝑘)) represent breakpoints 𝑃1, 𝑃2, … , 𝑃_𝑘.  

 

 

 

 

 

 

 

 

 

 

Figure 1 shows that at each of the line segments' ends, 𝑓(𝑥)=  𝑓(𝑥)̃ and  𝑓(𝑥)̃ is given as: 

FIGURE 1: Piecewise Linear Approximation (PLA)  𝐟(𝐱)̃  of Nonlinear 
function 𝐟(𝐱) 
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𝑓(𝑥)̃ = 𝑓(�̂�𝑘) +
𝑓(�̂�𝑘+1)−𝑓(�̂�𝑘)

�̂�𝑘+1−�̂�𝑘
(�̂� − �̂�𝑘),  �̂�𝑘 ≤ �̂� ≤  �̂�𝑘+1          (3) 

In (3), the fraction  
�̂�−�̂�𝑘

�̂�𝑘+1−�̂�𝑘
 is a number between 0 and 1 for any value of 𝑥 between 𝑥𝑘 and 𝑥𝑘+1. Let’s 

define, 

𝜆𝑘+1 ≔  𝜆 ∶=
�̂�−𝑥𝑘

�̂�𝑘+1−�̂�𝑘
        (4) 

The (3) can be expressed as 

  𝑓(𝑥)̃ = 𝑓(�̂�𝑘) + 𝜆(𝑓(�̂�𝑘+1) − 𝑓(�̂�𝑘)) = 𝜆𝑓(�̂�𝑘+1) − (1 − 𝜆)𝑓(�̂�𝑘),    �̂�𝑘 ≤ �̂� ≤  �̂�𝑘+1  (5) 

Introducing  𝜆𝑘 = 1 − 𝜆  and 𝜆𝑘+1 = 𝜆  we obtain 

𝑓(𝑥)̃ = 𝜆𝑘𝑓(�̂�𝑘) + 𝜆𝑘+1 𝑓(�̂�𝑘+1), �̂�𝑘 ≤ �̂� ≤  �̂�𝑘+1      (6) 

here, 𝜆𝑘  + 𝜆𝑘+1 = 1 and 𝜆𝑘  , 𝜆𝑘+1 ≥ 0 (convex constrains).              (7) 

Using (3), we get,  

𝑥 = �̂�𝑘 +  𝜆 ( �̂�𝑘+1 − �̂�𝑘)  = (1 − 𝜆) �̂�𝑘 + 𝜆  �̂�𝑘+1  = 𝜆𝑘  �̂�𝑘 + 𝜆𝑘+1 �̂�𝑘+1 (8) 

So, we can express any point 𝑥 in the closed interval [�̂�𝑘 , �̂�𝑘+1] as 

𝑥 = 𝜆𝑘  �̂�𝑘 + 𝜆𝑘+1 �̂�𝑘+1       (9) 

Subject to the convex constrains. 

This leads to the representation of 𝑓(𝑥) using a set of weighting variables, 𝜆𝑘 ,    𝑘 = 1, … , 𝐾  by the 

equality: 

𝑓(𝑥)̃ = 𝑓(�̂�1)𝜆1  + 𝑓(�̂�2)𝜆2 +  … + 𝑓(�̂�𝑘)𝜆𝑘                                       (10) 

here,   

�̂�1𝜆1 + �̂�2𝜆2 + ⋯ + �̂�𝑘 𝜆𝑘  − 𝑥 = 0  ,    𝑥 ≥ 0         (11) 

𝜆1 + 𝜆2 + ⋯ +  𝜆𝑘  = 1  , 𝜆𝑘  ≥ 0 ,    𝑘 = 1,2, … , 𝐾    (12) 

In (10), 𝑓(𝑥)̃ represents piecewise linear approximation (PLA) of the original nonlinear function 𝑓(𝑥). 

(12) must now include a constraint that no more than two adjacent 𝜆’s can ever be non-zero at once in a 

viable solution in order to express 𝑓(𝑥) by 𝑓(𝑥)̃. Here, (10), (11), and (12) are referred to as function rows, 

reference rows, and convexity rows, respectively, and they together defined as “λ-formulation” of the 

original non-linear function 𝑓(𝑥). The λ-formulation is a technique used to represent the PLA problem in 

a linear programming (LP) problem which is called approximated LP Problem [25].  The weighting 

variables 𝜆𝑘 ’s are the design variables and known as the special ordered set type two (SOS2) variables 

[26][27]. 

When SOS2 variables are included in a branch and bound framework, they intend to find a truly global 

optimum rather than simply local ones [28]. In the proposed work, the SVM optimization problem is 

transformed into an approximating LP problem and solved using the well-known GUROBI Optimizer, 
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which uses the in-built facility of solving SOS2 variables with branch and bound and mixed-integer 

programming techniques. 

6.1.2  The formulation of a hard-margin PLA-SVM problem 

 

 

 

 

 

 

(a)                                                  (b) 

FIGURE 2: a) Hard-margin SVM   b) Soft- Margin SVM 

Figure 2 (a) shows the hyperplane of hard-margin SVM. Consider a binary classification problem 

with training examples, for i=1 to m, where xi ∈ Rnandyi ∈ {+1, −1}. The hard-margin primal SVM 

design problem is to: Obtain weight vector ‖w‖ and intercept b of hyperplane solving the following 

optimization problem, 

𝐽 = 𝑚𝑖𝑛
1

2 
{𝑤𝑇𝑤}                                                                                (13) 

Such that, the following constraints are satisfied.   

𝐶𝑖 = 𝑦𝑖(𝑤𝑇𝑥𝑖 + 𝑏) ≥ 1 for i = 1, 2, 3, …..n.                                  (14) 

The decision function is: 

ℎ(𝑋𝑛𝑒𝑤) = 𝑠𝑖𝑔𝑛(W𝑇𝑋𝑛𝑒𝑤 + 𝑏) 

Here, the constraints are linear and the objective function is quadratic and separable. So, the 

aforementioned optimization problem is perfectly suited to be modeled as a separable linear programming 

problem. The optimal values for vectors w and b in this optimization problem are those that maximize the 

distance between classes. The hard-margin PLA-SVM problem is formulated by deriving the λ -

formulation of objective function J in (13) and constraints Ci for i = 1,2,3 … . n., in (14). 

To obtain λ -formulation of hard-margin and soft-margin SVM, let’s denote input feature space as xj, where 

j= 1, 2, 3……m, m= number of features/predictors in dataset and, label or output as yi where i=1,2, 3....n, 

n = number of observations in the dataset. 
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Let’s define xji as a value of jth feature at ith data point in the dataset. Let’s define ξi as the slack variable 

representing the degree of misclassification for the ith example and 𝐶 as the regularization parameter. In 

(13),   𝑤  is a weight vector and the number of elements of 𝑤 are equal to a number of features (m) in the 

given dataset. Now, let’s define, 𝑤 = [𝑤1  𝑤2  𝑤3 … … . 𝑤𝑚], m = number of features.  

Let’s denote the initial search domain for the elements of weight vector 𝑤, b and slack variables 

 ξi as 𝑤𝑗 = [𝑤𝑗
𝐿 , 𝑤𝑗

𝑈], [𝑏𝐿 , 𝑏𝑈] and   ξ𝑖 = [ξ𝑖
𝐿 , ξ𝑖

𝑈]   respectively. Here, 𝑤𝑗
𝐿 = Lower bound on 𝑤j,  ξ𝑖

𝐿 = Lower 

bound on ξ𝑖, 𝑤𝑗
𝑈= Upper bound on 𝑤j, ξ𝑖

𝑈= Upper bound on ξ𝑖   where j= 1,2,3...m, i=1, 2…n. Let’s 

denote 𝐼 𝑤1
, 𝐼𝑤2

, 𝐼𝑤3
......𝐼𝑤𝑚

,  𝐼ξ1
, 𝐼ξ2

, 𝐼ξ3
......𝐼ξ𝑛

  and 𝐼𝑏 as the number of breakpoints or intervals of the initial 

search domain of 𝑤1,𝑤2,𝑤3 … … . 𝑤𝑚 , ξ1 , ξ2, ξ3 … … ξn and b respectively.  

Using the above theory of separable programming and (13) and (14), the λ-formulation of hard-margin 

PLA-SVM problem is obtained as, 

Min 𝐽 = 𝑀𝑖𝑛
1

2
∑ ∑ λ𝑗𝑘(𝑤𝑗)

𝑘

2𝐼𝑊𝑗

𝑘=0
𝑚
𝑗=1                                           (15) 

Subject to constrain 𝐶𝑖 as, 

𝐶𝑖
λ = 𝑦𝑖[ ∑ ∑ 𝑥𝑗𝑖(λ𝑗𝑘𝑤𝑗𝑘)

𝐼𝑊𝑗

𝑘=0 ] + ∑ λ𝑘𝑏𝑘
𝐼𝑏
𝑘=0

𝑚
𝑗=1                                 (16) 

In addition to constraints of Eq. (16), we need to add convexity conditions and SOS2 conditions on each 

λ’s. In the above PLA-SVM problem, the design variables are the λ’s (SOS2 variables) defined for SVM 

parameters 𝑤 and b that is, λ𝑗𝑘, j= 1, 2,3….m, k= 0, 1, 2, 3 , ......,𝐼𝑤𝑗
 and λ𝑘, k= 0, 1, 2, 3 , ......,𝐼𝑏 

respectively. 

Any suitable optimizer solver, such as Gurobi [16], which employs mixed integer programming and the 

branch and bound algorithm, can effectively solve the proposed PLA-SVM problem. The optimal values 

of SVM parameters 𝑤 and b were obtained using design variables λ’s as, 

(𝑤)𝑂𝑝𝑡 = [(𝑤1)𝑂𝑝𝑡  (𝑤2)𝑂𝑝𝑡 … … ..  (𝑤𝑚)𝑂𝑝𝑡]                           (17) 

Where,  

(𝑤1)𝑂𝑝𝑡 = ∑ λ1𝑘𝑤1𝐼𝑊1

𝐼𝑊1

𝑘=0 , (𝑤2)𝑂𝑝𝑡 = ∑ λ2𝑘𝑤2𝐼𝑊2

𝐼𝑊2

𝑘=0 , . .(𝑤𝑚)𝑂𝑝𝑡 = ∑ λ𝑚𝑘𝑤𝑚𝐼𝑊𝑚

𝐼𝑊𝑗

𝑘=0        and 

(𝑏)𝑂𝑝𝑡 = ∑ λ𝑘𝑏𝑘
𝑏
𝑘=0                     

The Optimal SVM parameters (𝑊)𝑂𝑝𝑡 and (𝑏)𝑂𝑝𝑡 is used to classify an unknown sample 𝑋𝑛𝑒𝑤using 

following decision function as, 
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𝑆𝑖𝑔𝑛{(𝑌)𝑛𝑒𝑤} = (𝑊)𝑂𝑝𝑡
𝑇𝑋𝑛𝑒𝑤 + (𝑏)𝑂𝑝𝑡                                             (18) 

The optimal (minimum) values of the objective function 𝐽 of PLA-SVM can be obtained as 

(𝐽)𝑜𝑝𝑡 =
1

2
(𝑊)𝑂𝑝𝑡  

𝑇 (𝑊)𝑂𝑝𝑡        

The above hard-margin PLA-SVM is coded using MATLAB-GUROBI interface to design algorithm 1:                                

Algorithm 1: The hard-margin PLA-SVM algorithm 

Input: The training data set  (𝑥𝑡𝑟 ,  𝑦𝑡𝑟), The testing dataset (𝑥𝑡𝑒 ,  𝑦𝑡𝑒),  a prespecified tolerance Ɛ 

(Default tolerance is 1.00e-04). 

Output: “Optimal values of SVM parameters” 

Initialization: Initialize 𝑤𝑗 = [𝑤𝑗
𝐿 , 𝑤𝑗

𝑈], 𝑗 = 1 𝑡𝑜 𝑚, 𝑏 = [𝑏𝐿 , 𝑏𝑈] 

Define 𝐼 𝑤1
,  𝐼𝑤2

,  𝐼𝑤3
......𝐼𝑤𝑚

 and 𝐼𝑏  for  𝑤1, 𝑤2,𝑤3 … … . 𝑤𝑚  and b respectively. 

1: Choose K for K cross-validation 

2:  Obtain PLA of hard – margin SVM  

For  𝑖 = 1 𝑡𝑜 𝑛,   𝑗 = 1:  𝑚, 

𝑀𝑖𝑛 
1

2
{∑ ∑(𝑤𝑗𝑘)

2
 𝜆𝑤𝑗𝑘 

𝐼𝑤𝑗

𝑘=0

𝑚

𝑗=1

} 

Subject t:  𝐶𝑖
𝜆 =  𝑦𝑖 {∑ ∑ 𝑥𝑗𝑖  (𝑤𝑗𝑘 𝜆𝑤𝑗𝑘 ) 

𝐼𝑤𝑗

𝑘=0
𝑚
𝑗=1 } + 𝑦𝑖 {∑ 𝑏𝑘  𝜆𝑏𝑘

 
𝐼𝑏
𝑘=0 } 

𝜆𝑤𝑗0 + 𝜆𝑤𝑗1 + ⋯ + 𝜆𝑤𝑗𝐼𝑤𝑗
 =1,  𝜆𝑏0 + 𝜆𝑏1 +  … . +𝜆𝑏𝐼𝑏

= 1 

Impose SOS2 conditions for each λ’s,  ∑ 𝑤𝑗𝑘

𝐼𝑤𝑗

𝑘=0  and  ∑ 𝜆𝑏𝑘
 

𝐼𝑏
𝑘=0  

4: Initiate optimization of the PLA-SVM in Step 2 using GUROBI solver.  

5: If the solution is infeasible then, go to initialization step, change the initial values of 𝑤𝑗, 𝑏, 

     𝐼 𝑤1
,  𝐼𝑤2

,  𝐼𝑤3
......𝐼𝑤𝑚

 , 𝐼𝑏 and repeat. 

6: Obtain the optimal values of design variables  𝜆𝑤𝑗𝑘  
(𝑘 = 0 𝑡𝑜 𝐼𝑤𝑗

) and 𝜆𝑏𝑘 
(𝑘 = 0 𝑡𝑜 𝐼𝑏) 

7: Obtain an optimal value of PLA-SVM parameters (𝑤)𝑂𝑝𝑡  𝑎𝑛𝑑 (𝑏)𝑂𝑝𝑡 using design variables of Step 

6 as,  
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(𝑤𝑗)𝑂𝑝𝑡 = ∑ 𝜆𝑗𝑘𝑤𝑗𝑘

𝐼𝑤𝑗

𝑘=0  and  (𝑏)𝑂𝑝𝑡 = ∑ 𝑏𝑘  𝜆𝑏𝑘
 

𝐼𝑏
𝑘=0  

8: Test (𝑥𝑡𝑒 ,  𝑦𝑡𝑒) using the decision function, 𝑦𝑖 = 𝑠𝑖𝑔𝑛 (𝒘𝑜𝑝𝑡
𝑇 𝑥𝑡𝑒 + (𝑏)𝑂𝑝𝑡) 

9: Evaluate the obtained PLA-SVM Model and Deploy. 

 

6.1.3 The formulation of a soft-margin PLA-SVM problem 

The Figure 2 (b) illustrates the soft - margin SVM for a two-dimensional data set that is not linearly 

separable. It shows the separating hyperplane which allows some misclassification with the help of slack 

variables ξi, where i = 1 to n, n = number of observations. The primal formulation of soft-margin SVM as 

a quadratic optimization problem is given as: 

Min
𝜉,𝑊,

 𝐽 :  
1

2
  𝑤𝑇𝑤 + 𝐶 ∑ (𝜉𝑖)

p 𝑛
𝑖=1                                       (19) 

Subject to: 

Constraints ci = 𝑦𝑖(𝑤𝑇𝑥𝑖 + 𝑏) ≥ 1 −  ξi                                     (20) 

Where, 𝜉𝑖 ≥ 0, 𝜉𝑖 = 1, 2, ..., n 

 Using the theory of separable programming and (19) and (20) , the λ-formulation of soft-margin 

PLA-SVM problem is obtained as, 

𝑀𝑖𝑛 𝐽 = 𝑀𝑖𝑛 
1

2
{∑ ∑ (𝑤𝑗𝑘)

2
 λ𝑤𝑗𝑘 

𝐼𝑤𝑗

𝑘=0
𝑚
𝑗=1 } + 𝐶 {∑ ∑ (ξ𝑖𝑘) λξ𝑖𝑘

𝐼ξ𝑖
𝑘=0

𝑛
𝑖=1 }                          (21) 

𝑐𝑖
λ =  𝑦𝑖 {∑ ∑ 𝑥𝑗𝑖  (𝑤𝑗𝑘 λ𝑤𝑗𝑘 ) 

𝐼𝑤𝑗

𝑘=0
𝑚
𝑗=1 } + 𝑦𝑖 {∑ 𝑏𝑘  λbk

 
𝐼𝑏
𝑘=0 } + {∑ (ξ𝑖𝑘) λξ𝑖𝑘

𝐼ξ𝑖
𝑘=0 }                    (22) 

      The (21) and (22) together defines the soft-margin PLA-SVM. To solve this PLA-SVM efficiently 

and guarantee global optimality, we employ the GUROBI solver's GUROBI-MATLAB interface.  

 The optimal values of SVM parameters 𝑤, b and ξ𝑖 , is calculated using the obtained design 

variables λ’s same as shown in hard-margin PLA-SVM section. 

 Algorithm 2: The soft-margin PLASVM algorithm: 

Input: The training data set  (𝑥𝑡𝑟 , 𝑦𝑡𝑟), The testing dataset (𝑥𝑡𝑒 , 𝑦𝑡𝑒),  a prespecified 

tolerance Ɛ (Default tolerance is 1.00e-04). 

Output: “Optimal values of SVM parameters” 
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Initialization: Initialize 𝑤𝑗 = [𝑤𝑗
𝐿 , 𝑤𝑗

𝑈], 𝑗 = 1 𝑡𝑜 𝑚, 𝑏 = [𝑏𝐿 , 𝑏𝑈], 𝜉𝑖 = [0, 𝜉𝑖
𝑈], 𝑖 = 1 𝑡𝑜 𝑛. 

Define 𝐼 𝑤1
, 𝐼𝑤2

, 𝐼𝑤3
......𝐼𝑤𝑚

, 𝐼𝜉1
, 𝐼𝜉2

, 𝐼𝜉3
......𝐼𝜉𝑛

  and 𝐼𝑏 for  𝑤1,𝑤2,𝑤3 … … . 𝑤𝑚 , 

𝜉1 , 𝜉2, 𝜉3 … … 𝜉𝑛 and b respectively. 

1: Set 𝐶 = (0.01, 0.1, 1, 10, 100) and choose K for K cross-validation 

2:  Obtain PLA of soft – margin SVM  

             For  𝑖 = 1 𝑡𝑜 𝑛, 𝑗 = 1: 𝑚, 

            𝑀𝑖𝑛 
1

2
{∑ ∑ (𝑤𝑗𝑘)

2
 𝜆𝑤𝑗𝑘 

𝐼𝑤𝑗

𝑘=0
𝑚
𝑗=1 } + 𝐶 {∑ ∑ (𝜉𝑖𝑘) 𝜆𝜉𝑖𝑘

𝐼𝜉𝑖
𝑘=0

𝑛
𝑖=1 } 

Subject to:  𝐶𝑖
𝜆 =  𝑦𝑖 {∑ ∑ 𝑥𝑗𝑖  (𝑤𝑗𝑘 𝜆𝑤𝑗𝑘 ) 

𝐼𝑤𝑗

𝑘=0
𝑚
𝑗=1 } + 𝑦𝑖 {∑ 𝑏𝑘  𝜆𝑏𝑘

 
𝐼𝑏
𝑘=0 } + {∑ 𝜉𝑖𝑘 𝜆𝜉𝑖𝑘

𝐼𝜉𝑖
𝑘=0 } 

Here, 𝜆𝑤𝑗0
+ 𝜆𝑤𝑗1

+ ⋯ + 𝜆𝑤𝑗𝐼𝑤𝑗
=1, 𝜆𝜉𝑖0

+ 𝜆𝜉𝑖1
+  … + 𝜆𝜉𝑖𝐼𝜉𝑖

=1, 𝜆𝑏0
+ 𝜆𝑏1

+  … + 𝜆𝑏𝐼𝑏
= 1                

3: Impose SOS2 conditions for each λ’s, ∑  𝜆𝜉𝑖𝑘

𝐼𝜉𝑖
𝑘=0 ,∑ 𝑤𝑗𝑘

𝐼𝑤𝑗

𝑘=0  and  ∑ 𝜆𝑏𝑘
 

𝐼𝑏
𝑘=0  

4: Initiate optimization of the PLA-SVM in Step 2 using GUROBI solver.  

5: If the solution is infeasible then, go to initialization step, change the values of 𝑤𝑗, 𝑏 

    𝜉𝑖 , 𝐼 𝑤1
, 𝐼𝑤2

, 𝐼𝑤3
......𝐼𝑤𝑚

, 𝐼𝜉1
, 𝐼𝜉2

, 𝐼𝜉3
......𝐼𝜉𝑛

  and 𝐼𝑏 and repeat. 

6: Obtain the optimal values of design variables  𝜆𝑤𝑗𝑘  
(𝑘 = 0 𝑡𝑜 𝐼𝑤𝑗

), 𝜆𝑏𝑘 
(𝑘 = 0 𝑡𝑜 𝐼𝑏) and 

𝜆𝜉𝑖𝑘
(𝑘 = 0 𝑡𝑜 𝐼𝜉𝑖

) . 

7: Obtain an optimal value of PLA-SVM parameters (𝑤)𝑂𝑝𝑡 ,  (𝑏)𝑂𝑝𝑡 and (𝜉𝑖)𝑂𝑝𝑡 using 

design variables of Step 6 as, 

     (𝑤𝑗)𝑂𝑝𝑡 = ∑ 𝜆𝑗𝑘𝑤𝑗𝑘

𝐼𝑤𝑗

𝑘=0 ,   (𝑏)𝑂𝑝𝑡 = ∑ 𝑏𝑘  𝜆𝑏𝑘
 

𝐼𝑏
𝑘=0   𝑎𝑛𝑑   (𝜉𝑖)𝑂𝑝𝑡 = ∑ 𝜉𝑛𝑖 𝜆𝜉𝑛𝑖

𝐼𝜉𝑖
𝑘=0    

8: Test (𝑥𝑡𝑒 , 𝑦𝑡𝑒) using the decision function, 𝑦𝑖 = 𝑠𝑖𝑔𝑛 (𝒘𝑜𝑝𝑡
𝑇 𝑥𝑡𝑒 + (𝑏)𝑂𝑝𝑡) 

9: Evaluate the soft-margin PLA-SVM and Deploy. 

 

The proposed soft-margin PLASVM offers several salient features as: (i) direct solution of primal 

optimization, (ii) no initial guess of design variables required, (iii) feasibility and optimality guarantees 

due to GUROBI solver, (iv) efficient for large datasets as it leverages linear programming techniques, and 

(v) It generalizes well on unseen data due to global optimal solution of SVM parameters. 
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                     FIGURE 3: The Architecture of the Proposed PLA-SVM 

 

6.2 Results and Comparison  

In this research, the performance of the proposed hard-margin PLA-SVM and soft margin PLA-SVM has 

been evaluated and benchmarked against the existing classifiers. In all the datasets, an extensive pre-

processing like data cleaning, handling outliers, feature selection and class balance using SMOTE has 

been carried out depending on the nature of dataset. 

             All the computations were performed on a 4.8 GHz system with an Intel CORE i7 processor and 

8 Gb RAM with a 10-fold cross-validation using MATLAB-GUROBI interface of GUROBI optimizer. 

i) Validation of hard-margin PLA-SVM 

Dataset 1: Fault Identification of Laboratory Gas Turbine (GT) Engine 
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Gas turbine engine (GTE) is one of the most expensive pieces of machinery in aviation and stationary 

mechanical applications. A GTE actuator error may result in a large loss of system energy. Here, the gas 

turbine engine fault diagnosis problem is used as a classification problem to find out whether the engine's 

parts are healthy or faulty condition. There two faults with servo actuators in the fuel supply system 

(FSS): i) Lock-in-place and ii) Actuator offset (floating). 

 

TABLE 1: Description of GTE fault classification dataset 

 

 

 

                                              

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 4: Laboratory Mini SR GTE a) Cross 

section b) Schematic 
FIGURE 5: Scatter Plot of the GTE Dataset 

Datasets                                   Detail 

Description Actuator Offset (Floating) fault 

No of Features (02) 1.Fuel flow (Litre per hour) 2. Pulse width 

modulation 

Training set 

  

9741 Healthy Class 

3092   Faulty Class 

Testing set 

  

4175 Healthy Class 

1324   Faulty Class 

Fault mode F1 Healthy (Class 0) 

F2 Fault in Actuator (Class 1) 
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TABLE 2: Performance Comparison on GTE dataset 

Model 
Accuracy Precision F1 score ROC-AUC 

Training 
Time 

Train Test Train Test Train Test Train Test 

Decision 
Tree 

99.93 99.96 99.91 99.95 99.90 99.95 0.9997 0.9998 1.947 

Naïve 
Bayes 

95.83 95.58 97.40 97.45 93.94 93.94 0.9934 0.9939 13.602 

SMO-based 
SVM 

100 100 100 100 1 1 1 1 21.059 

KNN 100 100 100 100 1 1 1 1 24.327 

Ensemble 
Bagged Tree 

99.97 99.93 99.97 99.93 99.96 99.90 0.9998 0.9994 17.704 

Tri-Layered 
Neural 

Network 
100 100 100 100 1 1 1 1 16.564 

XG Boost 100 100 100 100 1 1 1 1 1.624 

Hard-margin 
PLA-SVM 

100 100 100 100 1 1 1 1 1.372 

 

 

 

 

FIGURE 6: Bar chart of Performance Comparison of PLA-SVM on GTE dataset  
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ii) Validation of soft-margin PLA-SVMs: 

Dataset 2: Iris flower dataset 

The Iris dataset is a widely used dataset from the UCI Machine Learning Repository [20] This flower 

dataset comprises 150 data samples of iris flowers, with 50 samples per each of the three species: 

serosae, versicolor, and virginica. In the present work, we have used petal length and petal width 

features and classes used are versicolor and virginica.  

 

TABLE 3: Performance Comparison on Iris dataset 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 7: Comparison of Performance matrices of PLA-SVM on Iris Dataset 

Classifier Name Accuracy (%) Precision (%) F1 Score Area Under the 
ROC Curve 

 

Training 
Time 

(Sec) 

Valid-
ation 

Test-
ing 

Valid-
ation 

Test-
ing 

Valid-
ation 

Test- 
ing 

Valid-
ation 

Test-
ing 

SMO-Based SVM 94.3 93.3 94.2 86.6 0.942
8 

0.928
5 

0.987
8 

1 3.8085 

Linear Discrimi-nant 94.3 93.3 94.2 86.6 0.942
8 

0.928
5 

0.991
0 

1 1.7875 

Ensemble Bagged 
Trees 

91.4 93.3 88.5 88.2 0.911
7 

0.937
5 

0.971
8 

0.995
6 

12.463 

Soft-Margin PLA-
SVM 

92.9 96.7 94.2 93.3 0.929
5 

0..965
5 

0.989
0 

0.993
3 

1.138 

K Nearest Neighbor 92.9 93.3 88.5 100 0.925
3 

0.937
5 

0.928
6 

0.933
3 

2.8939 

XGBoost 94.3 96.7 94.2 93.3 0.942
8 

0.965
5 

0.991
8 

1 2.2256 

Logistic Regression 
(Kernel) 

92.9 93.3 91.6 86.6 0.929
5 

0.928
5 

0.984
5 

1 11.102 
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Dataset 3: PIMA Indian Diabetes Dataset 

The dataset focuses on female patients and includes a target variable 'Outcome' for diabetes diagnosis, 

along with various medical predictor variables like BMI, insulin level, age, and number of pregnancies. 

It consists of 768 samples, of which 500 are non-diabetic and 268 diabetics, reflecting an unbalanced 

distribution. Pre-processing involved data cleaning, outlier management, and feature selection via 

Random Forest importance. To address the imbalance, SMOTE was used, increasing the proportion of 

diabetic instances for a more balanced dataset.  

TABLE 4: Description of PIMA dataset 

Feature Description Data Type Range 

Preg Number of times pregnant Numeric [0, 17] 

Gluc 
Plasma glucose concentration at 2 Hours in 
an oral glucose tolerance test (GTT) 

Numeric [0, 199] 

BP Diastolic Blood Pressure (mm Hg) Numeric [0, 122] 

Skin Triceps skin fold thickness (mm) Numeric [0, 99] 

Insulin 2-Hour Serum insulin (µU/ml) Numeric [0, 846] 

BMI 
Body mass index [weight in kg/ (Height in 
m) ^2] 

Numeric [0, 67.1] 

DPF Diabetes pedigree function Numeric [0.078, 2.42] 

Age Age (years) Numeric [21, 81] 

Class 
Binary value indicating non-
diabetic/diabetic 

Factor [0,1] 

 

TABLE 5: Performance Comparison on PIMA dataset 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Classifier Name 

Accuracy (%) Precision (%) F1 Score 

Area Under 

the ROC 

Curve 

 

Traini

ng 

Time 

(Sec) Valid-

ation 

Test

-ing 

Valid-

ation 

Test 

-ing 

Valid- 

ation 

Test- 

ing 

Valid- 

ation 

Test- 

ing 

Naïve Bayes 70.4 72.0 78.8 78.0 
0.727

2 

0.73

58 

0.814

6 

0.81

66 
2.83 

SMO-based SVM 76.1 77.3 78.0 75.3 
0.765

7 

0.76

87 

0.846

8 

0.84

68 
2.19 

Decision Tree 76.14 78.0 76.2 79.3 
0.761

7 

0.78

28 

0.786

5 

0.86

43 
12.56 

Tri layered NN 
Decision 

76.6 77.3 76.0 72.6 
0.764

3 

0.76

22 

0.803

3 

0.84

42 
33.68 

Soft-Margin PLA-
SVM 

76.6 78.7 74.57 
75.3

3 

0.760

9 

0.77

93 

0.851

1 

0.88

31 
1.37 

Linear Discrimi-
nant 

74.7 77 79.1 76.8 
0.757

8 

0.77

07 

0.847

8 

0.85

16 
2.30 

XGBoost 76.1 78.0 76.28 
79.3

3 

0.761

7 

0.78

28 

0.786

5 

0.86

43 
3.69 
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FIGURE 8: Comparison of Performance matrices of PLA-SVM on PIMA Dataset 

 

Dataset 4: Wisconsin Breast Cancer Dataset 

The WBC Dataset, with its 699 instances labelled as 'Malignant' (M) or 'Benign' (B) representing 

cancerous and non-cancerous tumors, respectively.  The primary objective to predict tumor 

malignancy whether a tumor is malignant (cancerous) or benign (non-cancerous) based on the 

provided features., In the pre-processing phase, missing values were addressed, features were 

standardized to a uniform scale, and the dataset was split, allocating 70% for training and 30% for 

testing purposes. 

TABLE 6: Description of WBC dataset 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sr.  No. Features/Predictors Details 

1 Sample code number Id number 

2 Clump Thickness 1-10 

3 Uniformity of Cell Size 1-10 

4 Uniformity of Cell Shape 1-10 

5 Marginal Adhesion 1-10 

6 Single Epithelial Cell Size 1-10 

7 Bare Nuclei 1-10 

8 Bland Chromatin 1-10 

9 Normal Nucleoli 1-10 

10 Mitoses 1-10 

11 Class 2 for Benign & 4 for Malignant 

Class Distribution Benign: 458(65.5%), Malignant: 241(34.5%) 

Total Number of Observations 699 

Number of Missing values 16 
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TABLE 7: Performance Comparison on WBC dataset 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                              

  

 

 

 

 

 

 

 

 

 

 

 

FIGURE 9 : Bar chart of Performance Comparison of PLA-SVM on WBC dataset 

 

Dataset 5: Predictive Maintenance AI4I2020 Dataset  

AI4I 2020 Predictive Maintenance Dataset is collected from the UCI Machine Learning Repository. The 

dataset is having total 10,000 Observations: 9661 Healthy class (0) and 339 Faulty Class (1) The dataset 

was cleaned by eliminating variables associated with failure modes and UDI, narrowing it down to five 

essential process variables. Exploratory analysis revealed no missing values, which negated the necessity 

for imputation. To rectify the class imbalance, SMOTE was employed to augment the minority class 

Classifier 
Name 

Accuracy (%) Precision (%) F1 Score 
Area Under the 

ROC Curve 
 

Training 
Time 
(Sec) Valid- 

ation 
Test- 
ing 

Valid- 
ation 

Test- 
ing 

Valid- 
ation 

Test- 
ing 

Valid- 
ation 

Test-ing 

Tri layered 
NN 

Decision 
94.5 97.6 95.95 98.54 0.9580 0.9818 0.9536 0.9719 5.76 

SMO-
based SVM 

96.1 98.1 96.57 98.54 0.9703 0.9854 0.9926 0.9990 2.37 

K Nearest 
Neighbor 

95.1 94.3 97.2 97.08 0.9630 0.9568 0.9416 0.9298 1.56 

Soft-
Margin 

PLA-SVM 
96.9 98.6 95.95 97.81 0.9762 0.9889 0.9781 0.9939 0.74 

Ensemble 
Boosted 

Trees 
93.1 96.7 94.08 97.81 0.9467 0.9745 0.9627 0.9902 8.07 

Linear 
Discrimi-

nant 
95.5 97.6 97.82 98.54 0.9662 0.9818 0.9917 0.9991 1.19 

XGBoost 97.21 98.3 96.26 97.51 0.9793 0.9859 0.9812 0.9909 0.83 
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from 339 to 9,467 samples, thereby synthesizing an additional 9,218 samples to achieve a balanced 

dataset of 19,128 observations. 

 

TABLE 8: Description of Predictive Maintenance AI4I2020 dataset 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE 9: Performance Comparison on Predictive Maintenance AI4I2020 dataset 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Classifier 
Name 

Accuracy (%) Precision (%) F1 Score 
Area Under the 

ROC Curve 
 

Training 
Time 
(Sec) Valid- 

ation 
Test- 
ing 

Valid- 
ation 

Test- 
ing 

Valid- 
ation 

Test- 
ing 

Valid-
ation 

Test-ing 

Linear 
Discri-
minant 

80.7 80.9 82.98 82.29 0.8125 0.8131 0.8919 0.9006 3.47 

SMO-
based 
SVM 

96.0 96.0 94.60 95.06 0.9595 0.9595 0.9898 0.9912 22.71 

K nearest 
Neighbor 

94.1 94.4 91.32 91.47 0.9401 0.9429 0.9840 0.9869 5.89 

Decision 
tree 

92.9 93.7 93.25 94.40 0.9298 0.9377 0.9599 0.9637 3.25 

Soft-
Margin  

PLA-SVM 
96.6 97.0 96.03 96.65 0.9661 0.9698 0.9930 0.9943 2.68 

Naïve 
Bayes 

82.1 81.6 84.75 83.16 0.8268 0.8200 0.8874 0.8877 6.52 

XGBoost 96.5 96.6 94.35 94.44 0.9644 0.9655 0.9651 0.9662 7.35 
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FIGURE 10: Bar Chart of Performance Comparison of Soft-margin PLA-SVM on AI4I2020 dataset 

 

Dataset 6: Machine Learning Kit 

The Practical Machine Learning Kit with a DC Motor is used to validate a PLA-SVM in a multi-fault scenario. It 

employs three magnetic disks to simulate different types of faults, generating substantial datasets. The kit connects 

to a computer via USB, where PWM signals control the motor, and its speed is monitored to capture the effects of 

the introduced faults for analysis. Real-time data is collected from the kit, logged into an Excel file, and used to 

differentiate between faulty and healthy states. The OneVsAll strategy of multi-class classification has been used 

to design n number of classifiers. 

 

 

 

 

 

FIGURE 11: Experimental setup of machine learning kit 



24 

 

TABLE 10: Description of ML Kit dataset 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 12:  The scatter plot of ML tool dataset 

 

TABLE 11: Performance Comparison on ML kit dataset 

 

 

 

 

 

 

 

 

Model 
Accuracy Precision F1 score ROC-AUC Training 

Time Train Test Train Test Train Test Train Test 

Decision Tree 88.1 88.5 88.13 88.54 0.8813 0.8854 0.9973 0.9986 1.3397 

SMO-based SVM 99.7 99.7 99.68 99.74 0.9968 0.9974 0.9990 0.9998 14.334 

 KNN 85.1 83.7 85.06 83.74 0.8506 0.8374 0.9863 0.9842 1.6667 

Ensemble Bagged 
Tree 

99.8 99.7 99.79 99.70 0.9979 0.9970 0.9995 0.9989 16.244 

Soft-margin PLA-
SVM 

99.8 99.8 99.76 99.80 0.9976 0.9980 0.9995 0.9996 1.0416 

XG Boost 99.8 99.7 99.86 99.76 0.9985 0.9974 0.9993 0.9997 3.0493 

 

Datasets Detail 

Description Machine Learning Tool 

No of Features (02) 1.PWM         2. Speed 

Training set  
5461 Healthy Class 

15725   Faulty Class (All Faults) 

Testing set  
2339 Healthy Class 

6741 Faulty Class (All Faults) 

Fault mode 

F1 Healthy (Class 0) 

F2 Fault in Disk 1(Class 1) 

F3 Fault in Disk 2 (Class 2) 

F4 Fault in Disk 3 (Class 3) 
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FIGURE 13: Bar chart of Performance Comparison of PLA-SVM on ML Tool dataset 

 

Discussion :  

When evaluating the PLA-SVM method across various benchmark datasets, it becomes evident that it 

attains a training speed that is orders of magnitude faster than current classifiers. In specific applications 

such as GT fault classification and ML Kit fault identification, PLA-SVM, along with the majority of 

other classifiers, achieves 100% accuracy. This level of precision is often associated with overfitting; 

however, in scenarios where the datasets are impeccably separable and devoid of noise, such accuracy is 

not only expected but also an indicator of the classifier's robustness. 

It's important to note that in the realm of faultlessly separable datasets, a classifier like the hard-margin 

SVM will identify a hyperplane that flawlessly discriminates between classes without signaling 

overfitting. Overfitting is predominantly a concern when a model cannot generalize to new data, despite 

its flawless performance on training data. However, the classifiers in question have been rigorously 

tested with unseen data and have maintained a 100% accuracy rate, reinforcing the conclusion that these 

high accuracy levels do not stem from overfitting but rather reflect the perfectly separable nature of the 

datasets. 

PLA-SVM utilizes linear or piecewise linear functions that are inherently less complex and thus can attain 

quicker convergence during the training phase. This simplicity also facilitates the model's ability to benefit 

from parallelization, leveraging multi-core processors or even distributed computing environments to 

further hasten both training and inference processes. Additionally, strategic algorithmic optimizations 

coupled with efficient resource management are instrumental in enhancing the speed of training, a 

characteristic that PLA-SVM shares with algorithms like XGBoost. These factors combined ensure that 
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PLA-SVM can be trained rapidly, making it an efficient choice for applications where time is of the 

essence.  

 

7 Achievements with respect to objectives 

 
The research embarked on the journey to optimize the SVM methodology, specifically targeting the 

primal optimization problem using PLA techniques. Below is a systematic account of the achievements 

obtained in alignment with the set objectives: 

● Successfully developed and introduced the PLA-SVM technique, which uses piecewise linear 

approximation to streamline the primal SVM optimization process. 

● Designed the PLA-SVM to be adaptable, requiring only an initial search domain and not a specific 

initial solution guess. Furthermore, the method offers reliable feasibility and optimality guarantees. 

● Demonstrated that the PLA-SVM, through its linear programming foundation, consistently offers 

faster training speeds, especially evident when handling the extensive dataset from the DC motor 

kit. 

● The PLA-SVM proved its mettle by effectively and efficiently processing the large dataset of 

around 30,266 observations from the DC motor kit. This showcased its capability to scale and 

handle big data challenges. 

● Comparative analyses showcased that PLA-SVM not only holds its ground but often outperforms 

established classifiers, such as SMO-based SVMs, XGBoost, and others, in terms of accuracy, 

precision, and training speed. 

● Successfully applied and validated the PLA-SVM on data from laboratory gas turbines and the 

Wisconsin Breast Cancer dataset, underlining its practical utility and effectiveness. 

 

In summary, the research has not only met its primary objectives but has also laid the groundwork for 

future advancements in the domain, emphasizing the potential and versatility of the primal SVM 

approach using PLA techniques. 

 

8     Conclusions 

 

Support Vector Machines (SVMs) stand as prominent tools in machine learning, especially for 

classification tasks. This research delved into the less-explored realm of SVMs—the primal optimization 

problem—aiming to simplify and optimize the process through Piecewise Linear Approximation (PLA) 

techniques. 
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The introduction of PLA-SVM offers a fast and efficient alternative, directly addressing primal 

optimization and streamlining the entire process for a more computationally efficient solution. A notable 

achievement is PLA-SVM's consistent speed advantage in training, whether benchmarked against 

classifiers or processing extensive datasets like the DC motor kit—crucial for real-world applications 

requiring rapid data processing and timely predictions. 

Beyond speed, PLA-SVM's versatility and robustness shine. Designed independently of initial guess 

solutions and adaptable to require only an initial search domain, it proves applicable across diverse 

scenarios. Its reliability, ensuring feasibility and optimality, solidifies its position as a formidable SVM 

methodology. 

Rigorous validations on datasets like Wisconsin Breast Cancer and laboratory gas turbines provide 

concrete evidence of PLA-SVM's practicality and effectiveness. Its generalization to unseen data, driven 

by global optimal solution attainment, is commendable. 

PLA-SVM's successful application to large datasets, notably from the DC motor kit, showcases its 

adeptness in handling challenges posed by high-dimensional and large-scale datasets—crucial in today's 

data-rich environment. Overall, in all examples, PLA-SVM algorithms outpace existing methods 

significantly. 

In conclusion, this study introduces a novel SVM optimization approach, focusing on the primal side and 

leveraging separable programming. PLA-SVM combines traditional SVM strengths with modern 

optimization, presenting a promising path forward. The introduced concepts hold potential extensions to 

design sophisticated machine learning algorithms, opening avenues for logistic regression with L1/L2 

regularization, neural network training, ensemble methods, reinforcement learning, and more. 
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